WEIGHTED REDUCED ORDER METHODS FOR PARAMETRIZED PDEs IN UNCERTAINTY QUANTIFICATION PROBLEMS

ثبت نشده
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced order methods for uncertainty quantification problems

This work provides a review on reduced order methods in solving uncertainty quantification problems. A quick introduction of the reduced order methods, including proper orthogonal decomposition and greedy reduced basis methods, are presented along with the essential components of general greedy algorithm, a posteriori error estimation and Offline-Online decomposition. More advanced reduced orde...

متن کامل

Model Order Reduction Techniques for Uncertainty Quantification Problems

The last few years have witnessed a tremendous development of the computational field of uncertainty quantification (UQ), which includes statistical, sensitivity and reliability analyses, stochastic or robust optimal control/design/optimization, parameter estimation, data assimilation, to name just a few. In all these problems, the solution of stochastic partial differential equations (PDEs) is...

متن کامل

A new algorithm for high-dimensional uncertainty quantification problems based on dimension-adaptive and reduced basis methods

In this work we develop an adaptive and reduced computational framework based on dimension-adaptive hierarchical approximation and reduced basis method for solving high-dimensional uncertainty quantification (UQ) problems. In order to tackle the computational challenge of “curse-ofdimensionality” commonly faced by these problems, we employ a dimension-adaptive tensor-product algorithm [29] and ...

متن کامل

A Training Set and Multiple Bases Generation Approach for Parametrized Model Reduction Based on Adaptive Grids in Parameter Space

Modern simulation scenarios require real-time or many-query responses from a simulation model. This is the driving force for increased efforts in Model Order Reduction (MOR) for high dimensional dynamical systems or partial differential equations (PDEs). This demand for fast simulation models is even more critical for parametrized problems. Several snapshot-based methods for basis construction ...

متن کامل

Reduced basis approximation and a posteriori error estimation for parametrized parabolic PDEs; Application to real-time Bayesian parameter estimation

In this chapter we consider reduced basis approximation and a posteriori error estimation for linear functional outputs of affinely parametrized linear and non-linear parabolic partial differential equations. The essential ingredients are Galerkin projection onto a low-dimensional space associated with a smooth “parametric manifold” — dimension reduction; efficient and effective Greedy and POD-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017